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ABSTRACT

Our paper presents a novel high dimensional probability density es-
timation technique using any dimensionality reduction method. Our
method first performs subspace reduction using any matrix factor-
ization algorithm and estimates the density in the low-dimensional
space using sample-point variable bandwidth kernel density estima-
tion. Subsequently, the high dimensional density is approximated
from the low dimensional density parameters. The reconstruction er-
ror due to dimensionality reduction process is also modeled in a prin-
cipled and efficient manner to obtain the high dimensional density
estimate. We show the effectiveness of our technique by using two
popular dimensionality reduction tools, principal component analy-
sis and non-negative matrix factorization. This technique is applied
to AT&T, Yale, Pointing’04 and CMU-PIE face recognition datasets
and improved performance compared to other dimensionality reduc-
tion and density estimation algorithms is obtained.

Index Terms— Probability density function; Principal compo-
nent analysis; Face recognition

1. INTRODUCTION

Probability density function estimation in the high dimensional input
space is important for statistical analysis of images. However, to well
represent the sample space, the number of required images should be
exponential to the cardinality of the input space. Due to this curse of
dimensionality, estimating density parameters accurately in the high
dimensional space becomes difficult. To overcome this problem, we
propose a method to effectively estimate the density parameters in
any lower dimensional subspace and then efficiently map them back
to its original input space.

Subspace analysis techniques aim to extract lower dimensional
representations for the data which help in simplifying problems such
as classification and regression. In this respect Principal Compo-
nent Analysis (PCA) [1] uses eigenvalue decomposition based di-
mensionality reduction. Independent Component Analysis (ICA) [2]
aims to extract statistically independent non-gaussian components of
the training data. Non-negative Matrix Factorization(NMF) [3] ex-
tracts non-negative features which have intuitive parts based mean-
ing associated with them. All these techniques aim to represent
the high-dimensional data as a linear combination of basis images.
However, each of these algorithms factorize the data subject to dif-
ferent constraints, yielding favorable feature extractions for different
applications.
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Fig. 1. Comparing flow diagrams of Moghaddam et. al. [4] and Our
Approach

Probabilistic subspace models have been effective for visual
recognition. In [8] and [4] Moghaddam et al. proposed a probabilis-
tic high dimensional density estimation technique that assumes the
data to have a gaussian mixture model in the input space and approx-
imates the covariance matrix computations by the top eigenvalues
and eigenvectors. Tipping and Bishop [5] proposed probabilis-
tic principal component analysis (PPCA), which views PCA as a
maximum likelihood procedure on a gaussian density model of the
observed data. In [6], Wang et al. proposed a unified subspace
analysis technique for face recognition. Lee et al. [7] proposed
kernel extensions to the similarity measure used in [8]. In [9],
Ramanathan et.al used the face similarity measure proposed in [8]
for face verification across age.

All the above mentioned techniques assume a parametric density
form in the high dimensional space and approximate these high di-
mensional parameters using top eigenvalues and eigenvectors similar
in spirit to [4]. Our approach however, follows a three step process.
First we compute the basis and the coefficients of the data matrix
using any matrix factorization technique. This is followed by ro-
bust density estimation in the low dimensional space. Finally, the
high dimensional density is efficiently approximated from the low
dimensional density parameters. Figure 1 elucidates the difference
in approach clearly. This approach has dual advantages. First we
can leverage any matrix factorization technique for subspace reduc-
tion. Also, as we first estimate the density in the low dimensional
subspace, complex modeling becomes feasible. The contributions
of this paper are

• A novel methodology to estimate the density parameters in
any subspace and effectively map them back to the original
input space.

• Effective modeling of low dimensional density using the ma-
trix factorization coefficients by sample-point variable band-
width kernel density estimation.
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• A novel approach of modeling the data matrix reconstruction
error in a principled and efficient manner using eigenvalue
perturbation.

2. REVIEW - DENSITY ESTIMATION USING
EIGENSPACE DECOMPOSITION (DED)

Moghaddam et al. proposed an efficient density estimation technique
for the high dimensional data v ∈ RN in [4], which divides the vec-
tor space RN into two complementary subspaces. This method esti-
mates the complete probability distribution of an object’s appearance
using an eigenvector decomposition of the image space. The target
density is decomposed into two parts: density in the principal sub-
space F and its orthogonal complement space F̄. The density in
the principal subspace is obtained using the first M principal com-
ponents y = {yi}i=1...M . The complete optimal high-dimensional
density estimate can be expressed as a product of two independent
marginal gaussian densities
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where PF (v) is the true marginal density in F, and P̂F̄ (v|ρ) is
the marginal density in the orthogonal complement space F̄. Here,
ε2(v) is the PCA residual and {λi} are the top eigenvalues of the
covariance matrix of v. The optimal value of ρ is obtained by mini-
mizing the divergence between the original probability density func-
tion and the approximation in (1). The optimal ρ is the average of
the eigenvalues of F̄.

ρ =
1

N −M

N∑
i=M+1

λi (2)

There are several approximate ways to estimate ρ, as all the
eigenvalues of F̄ are difficult to compute. This technique has been
effective for face recognition and object detection problems. A de-
tailed description of this method is presented in [4] and its applica-
tion for face recognition is presented in [8]. A primary drawback
with this technique is the high dimensional density is assumed to
be gaussian and will not model datasets with high variability. To
address this, our method uses a more general density model using
variable bandwidth kernel density estimation. Also, DED is based
on eigenspace decomposition and cannot utilize any general matrix
factorization method for density estimation.

3. OUR APPROACH - GENERALIZED SUBSPACE BASED
DENSITY ESTIMATION (GSD)

Our high dimensional density estimation technique GSD first per-
forms matrix factorization on the data matrix. It decomposes a data
matrix (V) to a set of bases (W) and corresponding coefficients
(H).

Vn×nt ≈ Wn×mHm×nt (3)

where V = [vij] = [v1, .....,vnt ] is a n × nt matrix , n is the total
number of pixels in each image, vj is the jth input image repre-
sented as a column vector, and nt is the number of training images.
We denote the basis matrix W = [wij] = [w1, ...,wm] as an n×m

matrix. The low dimensional embedding of every column of V is
the corresponding column in H = [hij]= [h1, ...,hnt ].

In our appoach after dimensionality reduction, we initially esti-
mate the probability density in low dimensional space (H). In the
current setting we use variable bandwidth kernel density estimation
as proposed in [10] in the low dimensional space which estimates an
effective and robust density. Hence, a generalized covariance band-
width matrix Σhi is estimated for the sample point hi, which is the
covariance of the k nearest neighbors of hi (using euclidean dis-
tance). Thus, using a Normal kernel, the density estimator in the
coefficients subspace (H) is

fH(h) =
1

nt(2π)m/2

nt∑
i=1

1

|Σhi |1/2

exp
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2
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T (Σhi)
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(4)

Let vi = Whi + δi, and V = WH + Δ. In this setting, Δ is
assumed to be uncorrelated with H. In addition, δi’s are assumed
to be identically distributed as N (δmean,ΣΔ) and hence the high
dimensional density fV (v) is expressed as follows

fV (v) =
1

nt(2π)N/2

nt∑
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1

|Σvi |1/2

exp
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2
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where

v̂i = Whi + δmean

Σvi = WΣhiW
T +ΣΔ (6)

In the above equation, the high-dimensional covariance (Σvi )
consists of two parts, the covariance using the subspace WΣhiW

T ,
also denoted by Σsubi , and the covariance using the reconstruction
error (ΣΔ). Here, |Σvi | and Σ−1

vi cannot be computed directly as
Σvi is not of full rank. Therefore, the top M eigenvalues and eigen-
vectors of Σvi are used to approximate |Σvi | as

|Σvi | ≈ λ1
viλ

2
viλ

3
vi ...λ

M
vi (7)

In the present analysis, M is assumed to be the same as the
dimension of the coefficient subspace m in (3). In general, M < m.
Also, the Mahalanobis distance d(vi) is expressed as

d(vi) = (v − v̂i)
T (Σvi)

−1(v − v̂i)

= (v − v̂i)
T (ΦviΛviΦ

T
vi)
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= yT
i Λ
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vi yi (8)

where Φvi and Λvi are the eigenvector and eigenvalue matrices of
Σvi . Let yi = ΦT

vi(v − vi) where yi = {yk
i }k=1...N . Here the

eigenvalues and eigenvectors of Σvi are denoted by {λk
vi}k=1...N

and {φk
vi}k=1...N respectively. Thus, the Mahalanobis distance

d(vi) can also be expressed as

d(vi) =

N∑
k=1

(yk
i )

2

λk
vi

(9)
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Computation of (9) is not feasible as all the eigenvalues of the co-
variance matrix cannot be computed efficiently. Hence, the top M
eigenvalues are used to approximate the Mahalanobis distance as

d̂(vi) =
M∑
k=1

(yk
i )

2

λk
vi

(10)

We now propose an efficient way to compute the top M eigenvalues
and eigenvectors of Σvi . In this regard, the eigen decomposition of
Σsubi (WΣhiW

T ) is exactly and efficiently computed and then the
effect of ΣΔ is considered from (6). The eigenvalues and eigenvec-
tors of Σsubi are exactly computed using the common PCA trick

WΣhiW
T =

1

nt
(WH̃)(WH̃)T (11)

where H̃ is the mean subtracted matrix obtained from H. The
eigen decomposition of 1

nt
(WH̃)T (WH̃) is computed to find the

eigenvalues and eigenvectors of WΣhiW
T similar to PCA.

Let the eigen decomposition of Σsubi be denoted by {λk
subi

}
and {φk

subi
}. Now, ΣΔ is assumed to be a perturbation to Σsubi

(Σvi = Σsubi +ΣΔ). Therefore, the eigenvalues and eigenvectors
of Σvi are obtained as follows
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The derivation of the above relation on eigenvalue perturbation is
presented in [11].

Using {λvi} and {yi} (computed from {φvi}) from (12) and
(13), the final density estimate GSD is approximated from (5) as
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4. EXPERIMENTS AND RESULTS

The performance of our algorithm on face recognition task is pre-
sented with four canonical face datasets, the AT&T (formerly ORL
face database), Yale, Pointing’04 and CMU-PIE faces. The multi-
class face recognition problem is modeled into multiple two class
classification problems similar to [8]. Models are built to find if two
faces belong to the same person or different people. Here, Ωs is the
class for modeling faces belonging to the same person and Ωd is the
class for modeling faces belonging to different people. In the current
implementation, the absolute difference image between two people
|I1 − I2|, same person or different people is considered to obtain Ωs

and Ωd respectively. As our method can be used in conjunction with
any matrix factorization technique, we choose two popular subspace
reduction algorithms PCA and NMF. PCA captures global eigen-
faces and NMF obtains parts-based features in their corresponding

basis images respectively. The performance of our approach is com-
pared with PCA, NMF, LNMF [12] and DED while changing the
number of basis images.

4.1. Classification rule

In the following experiments, the training set for Ωs and Ωd are ran-
domly chosen. Then, the models are trained to estimate the param-
eters {λvi} and {φvi} for Ωs and Ωd from the training set. Given
a test face, vtest, the likelihoods of the test face and the training
face vtrain belonging to the same class (Ωs) and the test face and
the training face belonging to different classes (Ωd) are computed.
In this regard the difference image |vtest − vtrain| is used for v
in (14). Subsequently, a subset of training faces are selected which
have probability of Ωs greater than probability of Ωd after compar-
ing the test data vtest with all the training images. Let the selected
subset of training faces for vtest be denoted as Tvtest . Finally, the
test class for vtest is inferred by a simple polling on the class labels
of Tvtest .

4.2. AT&T and Yale datasets

The Cambridge AT&T database consists of 400 frontal face images
of 40 people with varying facial expressions and details. A training
set of 280 images, 7 from each class, are randomly selected and the
remaining 120 are used for testing. In order to create the training set
for Ωs and Ωd, 840 image pairs from the same person and 840 image
pairs from different people are selected from the 280 images. The
Yale face database contains 165 gray-scale frontal face images of 15
individuals. The images are taken under varying lighting conditions
and facial expressions. To create the training set for Ωs and Ωd, 420
image pairs from the same person and 420 image pairs from different
people are chosen from the training set of 120 images.

4.3. Pointing’04 face dataset

This head pose database [13] consists of 15 sets of images, 186 im-
ages per person. In our analysis, the dataset is preprocessed using
Viola-Jones [14] frontal and profile face detectors to isolate the faces
alone. In addition, false detections are manually discarded. The im-
ages are then resized to 40×40 pixels. The results after preprocess-
ing are shown in Figure 2. We can notice that faces are unaligned due
to which the recognition task is significantly difficult. We trained our
algorithm on 675 training images (45 from every class) and tested on
724 images. To create the training set for Ωs and Ωd from the 675
training images, 1000 image pairs from the same person and 1000
image pairs from different people are randomly chosen.

Fig. 2. Example of face from the Pointing’04 dataset.
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4.4. CMU-PIE dataset

The CMU-PIE dataset [15] consists of face images of 68 subjects
with 43 different illumination conditions across 13 poses. All ex-
tracted face images are aligned and normalized to size of 32×24
pixels. We select faces of 59 subjects, for every subject we ran-
domly select 6 illuminations for each of the 9 pan angles (excluding
c31 c25 c07 c09). An example subject is shown in Figure 3. Out of
these 54 images per subject we randomly select 36 faces for training
and the rest for testing. From the training images to create the train-
ing set for Ωs and Ωd, 1200 image pairs from the same person and
1200 image pairs from different people are chosen.

Fig. 3. Example face from the CMU-PIE dataset

Results A repeated random sub-sampling validation is per-
formed using 5 repeats on all the methods. The performance of the
different algorithms on AT&T and Yale faces is illustrated in Fig-
ure 4. In the AT&T database, among the dimensionality reduction
algorithms, LNMF achieves the best accuracy of 94% for 35 basis
images. In the Yale database, PCA achieves the best accuracy of
around 77% for 25 basis images. DED gives an accuracy of around
95% and 94% for these datasets. GSD+PCA outperforms all the
techniques on the Yale and AT&T datasets by achieving recognition
accuracy of 98.8% and 99.1%(40 basis images) respectively. We
note that the same feature |I1 − I2| is used to compare the per-
formance of DED and GSD. The key observation is that there is
a significant performance difference in using the original NMF or
PCA algorithm directly and using GSD+PCA or GSD+NMF.
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Fig. 4. Classification performance on AT&T (left) and Yale (right)
datasets.(Best viewed in color)

In the more challenging Pointing’04 and CMU-PIE datasets with
pose and illuminiation variations, GSD+NMF achieves the best per-
formace of 84.7% and 92.1% for 60 and 70 basis images respec-
tively. This is followed by GSD+PCA. Table 1 shows the perfor-
mance of other methods on these datasets. Here we report the best
results after changing the basis images images from 30 to 80 for
both the datasets. In face recognition problems with extreme ap-
pearence, pose and illumination variations, parts based subspace re-

duction methods such as NMF are more effective than PCA. As our
method can use any matrix factorization based subspace reduction
technique to obtain the high dimensional density, using GSD+NMF
we obtain the best results in Pointing’04 and CMU-PIE faces.

PCA NMF LNMF
[12]

DED
[8]

GSD
+PCA

GSD
+NMF

Pointing 77.6 78.8 76.5 78.3 82.8 84.7
CMU-PIE 82.4 83.1 83.3 87.2 90.4 92.1

Table 1. Classification accuracies (in %) on Pointing’04 and CMU-
PIE datasets.

5. CONCLUSION

A novel framework for high dimensional density estimation using
variable bandwidth kernel density estimation in the lower dimen-
sional space is proposed in this paper. This method can use any
matrix factorization technique to obtain the high dimensional den-
sity. In conjunction with PCA and NMF our method outperforms
other relevant subspace reduction and density estimation algorithms
on popular face recognition datasets.
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